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Abstract

A new three-dimensional quadratic interface finite element is developed. The element is made up by two 6-noded

triangular surfaces which initially lie together and connect the faces of adjacent quadratic tetrahedra, the only elements

supported by automatic meshing algorithms. The element is introduced within the framework of implicit analysis and

large displacements, and can include any traction–separation law at the interface. It is aimed at simulating damage by

particle fracture and interface decohesion in composites by the numerical simulation in three-dimensions of a repre-

sentative volume element which reproduces the microstructure. The element was validated by comparison with previous

results of sphere–matrix decohesion obtained in two-dimensional, axisymmetric conditions. In addition, a new control

technique is presented to obtain the whole load–displacement curve at a reasonable computational cost when pro-

gressive damage throughout the model (due to the simultaneous development of multiple cracks) leads to severe

numerical instabilities. The potential of the new element and the control technique were checked in simulations

including sphere fracture in composites made up of random distribution of elastic spheres within an elasto-plastic

matrix.
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1. Introduction

The processing speed of digital computers and the techniques of parallel computing advance rapidly, and

the mechanical behavior of heterogeneous materials can nowadays be analyzed through numerical simu-

lation in three-dimensions of a representative volume element which mimics accurately the actual micro-

structure. Applications of this new methodology to particle-reinforced composites (PRC) were pioneered

by Gusev (1997) and Michel et al. (1999) in the elastic regime, and it was used by Segurado and LLorca

(2002) to obtain an ‘‘exact’’ solution (to a few percent) of a classical problem in solid mechanics: the
determination of the elastic constants of a composite material made up of a random and homogeneous
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distribution of monodisperse elastic spheres embedded in an elastic matrix. More recent developments

addressed the elastic behavior of misaligned short fiber-reinforced composites (Lusti et al., 2002) and the

simulation of the effects of the particle spatial distribution on the overall elasto-plastic properties in sphere-

reinforced composites (Segurado et al., 2003).
Further improvements in the modeling of PRC should be aimed at including the effect of damage, which

is known to control many critical mechanical properties such as ductility and fracture toughness. Experi-

mental observations on polymer- and metal-matrix composites reinforced with brittle, stiff ceramic particles

have demonstrated that damage was always nucleated at the ceramic reinforcements, the main causes of

void nucleation being particle fracture and decohesion at the matrix/reinforcement interface (Moloney

et al., 1987; Cantwell and Roulin-Moloney, 1989; Gonz�alez and LLorca, 1998; LLorca, 2000). The prev-

alence of either mechanism depended on a number a factors, which included matrix, reinforcement, and

interfacial strength, the loading mode and the spatial reinforcement distribution.
The patterns of interface decohesion and particle fracture are well known from experimental observa-

tions in sphere-reinforced composites (Fig. 1). Particle fracture takes place suddenly by the unstable

propagation of a crack perpendicular to the tensile loading axis through the equator of the sphere, while

interface decohesion is stable: it begins at the poles of the spheres and propagates gradually through the

interface as the applied strain increases. The plastic deformation of the matrix around the sphere leads to

the formation of a void in between the sphere halves or at the poles, and composite fracture is often dictated

by the formation of a crack by the impingement of the voids nucleated at neighbor particles or by the

localization of the plastic deformation in the intervoid matrix (Kanetake et al., 1995; Babout et al., 2001).
Computational micromechanics models are ideal tools to study the initiation and progress of damage

throughout the microstructure. The simulation of matrix failure within the context of three-dimensional

numerical simulations of the composite microstructure was addressed in a previous publication (LLorca
Fig. 1. Damage nucleation in particle-reinforced composites. (a) Interface decohesion. (b) Particle fracture. The composite material was

made up of a 6061 Al alloy reinforced with alumina spherical particles. The loading axis was horizontal (Kanetake et al., 1995).
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and Segurado, 2004). This paper is focused on the characterization of the nucleation of damage by particle

fracture and interface decohesion.

Assuming that the crack path is known a priori (either at the sphere/matrix interface or at the equator of

the spheres), various strategies can be used to model damage. For instance, Eckschlager et al. (2002)
duplicated the nodes at the sphere equator, and linked the degrees of freedom corresponding to the nodes

with the same coordinates. Fracture was simulated by releasing all the degrees of freedom across the

fracture surface at a constant applied strain when the volume-averaged maximum principal stress in the

particle reached a critical value. The extrapolation of this technique to study interface fracture is, however,

uncertain, and the physical mechanisms of fracture are better represented by a cohesive crack model. This

approach was first introduced by Needleman (1987) to analyze interface decohesion at metal–ceramic

interfaces within the framework of computational micromechanics and has been extensively used since to

model interface fracture in two-dimensional problems (Tvergaard, 1990; Tvergaard and Hutchinson, 1993;
Ghosh et al., 2000). From the discretization viewpoint, the crack is represented by interface elements with

zero initial thickness which transmits normal and shear stresses. The magnitude of these stresses depends on

the gap in normal and shear displacements between both crack faces, and different constitutive equations

can be used to study crack nucleation and propagation through an interface or brittle fracture at the

equator of a sphere.

The numerical implementations of the cohesive crack model were mainly carried out in two dimensions

and there are few applications in three dimensions. They include the work of Ortiz and Pandolfi (1999) and

Pandolfi et al. (2000) within the framework of an explicit integration scheme and of de Andr�es et al. (1999),
Hashagen and de Borst (2000) and Roychowdhury et al. (2003) for implicit solvers. The cohesive elements

used with implicit solvers were always made up by two quadrilateral surfaces connecting brick elements

which are normally used to discretize the continuum in three dimensions. However, the discretization of the

complex microstructures of PRC has to be done with automatic meshing algorithms which only use

tetrahedra, and the use of cohesive crack models to simulate damage requires the corresponding interface

elements compatible with the solid tetrahedra.

This paper introduces two new three-dimensional cohesive elements made up of two triangular surfaces

which are compatible, respectively, with the standard 10-node tetrahedra solid elements as well as with the
modified 10-node tetrahedra in Abaqus (2002) and in Thoutireddy et al. (2002). The element is developed

using a large displacement formulation, necessary to account for the large voids formed at the interface and

within the particles during fracture (Fig. 1). In addition, a new control technique is presented to obtain the

whole load–displacement response in a simulation at a reasonable computational cost because the nucle-

ation of damage in the microstructure often leads to numerical instabilities, which delay (or even impede)

the convergence. The cohesive elements can use any constitutive equation for the cohesive crack; the one

used by Needleman (1987) is implemented to check the new element by comparing the results of the full

three-dimensional simulation with the axisymmetric predictions of interface decohesion in a rigid sphere
embedded in an elasto-plastic matrix. Once the element had been validated, the control algorithm was

checked in simulations including sphere fracture and interface decohesion within the framework of multi-

particle cell models.
2. Interface finite element in three-dimensions

2.1. Element formulation

The interface element is made up of two quadratic (6-node) triangular surfaces that connect the faces of

two adjacent quadratic tetrahedra. Two versions of the element were developed; the first one, denominated
standard, is compatible with the standard, isoparametric 10-node tetrahedra. The modified interface element
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is compatible with the composite tetrahedra of Thoutireddy et al. (2002) and with the modified 10-node

tetrahedra of Abaqus (2002). These latter elements have three extra internal degrees of freedom (corre-

sponding to an internal node) and their shape functions are obtained by adding the shape functions of the

twelve 4-node linear tetrahedra that compose the modified tetrahedron. This element, developed to alleviate
some problems of the standard 10-node tetrahedra for contact problems (particularly in uniform pressure

situations), exhibits minimal shear and volumetric locking and is robust during finite deformation.

The two triangular surfaces of the interface element lie together in the initial configuration (zero

thickness) and separate as the adjacent solid elements deform (Fig. 2). The relative displacement of the

element faces generate normal and shear stresses depending on the constitutive equation of the cohesive

crack, which is independent of the element formulation. The interface element has 36 degrees of freedom.

The nodal displacements in the global coordinate system are given by the 36 · 1 column vector dN defined as
Fig. 2.

surfac
dN ¼ d1
x d1

y d1
z d2

x d2
y d2

z � � � d12
x d12

y d12
z

� �T
; ð1Þ
and the relative displacement between paired nodes in the element surfaces is given in global coordinates by

the 18 · 1 column vector DuN
DuN ¼ U�dN ¼ I18�18 j �I18�18ð ÞdN ; ð2Þ
where In�n is the identity matrix.

Let /iðn; gÞ be the shape function for the node pair i (i ¼ 1; 6), where n and g stand for the natural

element coordinates 06 n6 1, 06 g6 1. The relative displacement between the element faces at the point

ðn; gÞ can be interpolated as a function of relative displacement between paired nodes as
Duðn; gÞ ¼
Duxðn; gÞ
Duyðn; gÞ
Duzðn; gÞ

0
@

1
A ¼ U��ðn; gÞDuN ; ð3Þ
where U�� is a 3 · 18 matrix given by
U��ðn; gÞ ¼ /1I3�3 j /2I3�3 j /3I3�3 j /4I3�3 j /5I3�3 j /6I3�3ð Þ: ð4Þ
The shape functions /i (i ¼ 1; 6) for the standard and modified elements can be found in Appendix A,
and Eqs. (2) and (3) lead to
(a) (b)

Interface finite element. (a) Initial configuration with zero thickness. (b) Current configuration showing the reference middle

e.



J. Segurado, J. LLorca / International Journal of Solids and Structures 41 (2004) 2977–2993 2981
Duðn; gÞ ¼ U��U� ¼ UdN ; ð5Þ
whereU is the 3 · 36 matrix which computes the relative crack opening at any point of the interface element
from the nodal displacements.

Under the large displacement formulation, the local coordinate system of the interface element in the

deformed configuration has to be defined to compute the current normal and tangential directions. Ortiz

and Pandolfi (1999) used a reference surface given by the middle points between the two (deformed) tri-

angular surfaces (Fig. 2). If the coordinates of the interface element nodes at the initial configuration are

given by the 36 · 1 vector xN , the reference surface is defined by the coordinates of 6 points in the 18 · 1
vector xR

N computed by linear interpolation of the coordinates of paired nodes in both surfaces in the

deformed configuration as
xR
N ¼ 1

2
I18�18 j I18�18ð ÞðxN þ dN Þ; ð6Þ
and the coordinates of one point in the reference surface, xRðn; gÞ, are computed from xR
N using the shape

functions of the interface element given in Eq. (4),
xRðn; gÞ ¼ U��ðn; gÞxR
N : ð7Þ
Once the reference surface is known, the local coordinate system in the current configuration (Fig. 2) is

defined by three perpendicular vectors, with unit modulus, expressed by
n̂ ¼ 1

oxR

on � oxR

og

��� ���
oxR

on
� oxR

og

� �
; t̂1 ¼

1

oxR

on

��� ���
oxR

on
; t̂2 ¼ n̂� t̂1; ð8Þ
where n̂ is normal to the surface and t̂1 and t̂2 are tangential to the surface. The 3 · 3 rotation matrix from

the global coordinate system to the current local one, R, is thus given by
R ¼
n̂T

t̂T1
t̂T2

0
BB@

1
CCA: ð9Þ
Once the local coordinate system is defined in terms of the global one, it is possible to compute the nodal

force vector and the tangent stiffness matrix of the interface element. For a large displacement formulation,

neglecting inertia and body forces, the virtual work expression for a body of volume V containing various

cohesive surfaces denoted by Scoh can be written in the form
Z
V
rrsdudV þ

Z
Scoh

dDuTtcoh dScoh ¼
Z
Sext

duTtext dSext; ð10Þ
where r is the Cauchy stress tensor, u the displacement field, Du the relative displacement between point

pairs on opposing sides of the cohesive surface (which had the same position in the initial configuration),
and tcoh and text stand for the tractions acting, respectively, across the cohesive surfaces and on the external

surfaces in the current configuration.

The nodal forces in the interface element are given by a 36 · 1 vector, felN , computed as
felN ¼
Z 1

0

Z 1

0

UTRTtlocJ dndg ¼
X
j

xjU
TRTtlocJ ; ð11Þ
where tloc is the 3 · 1 vector which provides the 3 components (one normal and two tangential) of the
tractions acting on the cohesive surface in the current configuration as a function of the relative

displacement between the element surfaces in local coordinates. J is the Jacobian of the transformation
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between the natural coordinates ðn; gÞ and Cartesian coordinates in relation to the reference surface in the

current configuration expressed as
J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðx; yÞ
Dðn; gÞ

� �2

þ Dðx; zÞ
Dðn; gÞ

� �2

þ Dðy; zÞ
Dðn; gÞ

� �2
s

; ð12Þ
and xj is the weight at the Gauss point j to compute the integrals with the Gauss method. 3-, 7- and 13-

point Gauss rules were implemented in the standard interface element and it was found that the 3-point rule

provided a good approximation. The 4-point rule (one Gauss point at each linear triangle) was used in the

modified interface element.

The 36 · 36 tangent stiffness matrix for the element, Kel, can be defined as
Kel ¼ ofelN
odel

¼
Z
el

UT ot

oDu
UdSel; ð13Þ
and this leads to
Kel ¼
Z 1

0

Z 1

0

UTRTClocRUJ dndg ¼
X
j

xjU
TRTClocRUJ ; ð14Þ
where Cloc is a 3 · 3 matrix defined as
Cloc ¼
otloc

oDuloc
; ð15Þ
and Duloc ¼ RDu stands for the relative displacement between the interface element surfaces in the current

local coordinate system.
2.2. Constitutive equation for the cohesive crack

The interface element formulated above can accommodate any cohesive crack model which relates the

stresses transferred across the crack with the relative displacement between the crack surfaces. They are

introduced in the element formulation through the vector tloc and the matrix Cloc. In order to validate the

new interface element, the cohesive law used by Needleman (1987) to study decohesion between a rigid

sphere and an elasto-plastic matrix was implemented here. The normal and tangential components of the

interface tractions are derived from an elastic potential, /, which depends only on the normal (Dun) and
tangential (Dut1 and Dut2) relative displacements between the crack surfaces according to
/ðDun;Dut1;Dut2Þ ¼
27tcDuc
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þ c
2
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1

"
� 2
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þ Dun
Duc

� �2
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ð16Þ
for Dun < Duc, where tc is the maximum normal stress carried by the interface undergoing a purely normal

separation (Dut1 ¼ Dut2 ¼ 0) and Duc is the relative normal displacement between the crack faces at which

all the cohesive forces vanish. The parameter c specifies the ratio of normal to shear stiffness of the interface

with c ¼ 0, indicating that the cohesive element only transfers normal stresses. Evidently, the normal (tn)
and tangential (tt1 and tt2) tractions at the interface can be computed by derivating the elastic potential with

respect to the corresponding relative displacements between the crack faces, and the tloc vector is given by
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Dut1 ¼ Dut2 ¼ 0.
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tloc ¼
tnðDun;Dut1;Dut2Þ

tt1ðDun;Dut1Þ
tt2ðDun;Dut2Þ

0
@

1
A ¼

� o/
oDun

� o/
oDut1

� o/
oDut2

0
B@

1
CA if Dun 6Duc; ð17Þ
and tn ¼ tt1 ¼ tt2 ¼ 0 if Dun > Duc. The Cloc matrix is immediately obtained from tloc following Eq. (15).
The normal tractions transferred across the cohesive crack when Dut1 ¼ Dut2 ¼ 0 are plotted in Fig. 3 as

a function of the normal opening between the crack faces. This figure also shows the three main parameters

which control the cohesive crack behavior, namely the maximum normal traction, tc, the critical normal

opening at which all tractions disappear, Duc, and the fracture energy of the interface, which is given by the

area under the tn–Dun curve in the Figure, and which can also be obtained as /ðDucÞ. Evidently, the fracture
energy is independent of the fracture path because the stresses are derived from an elastic potential /. These
three parameters are related by
/ðDucÞ ¼ 9
16
tcDuc: ð18Þ
It should be noted that the initial slope of the tn–Dun curve is not infinity, and thus the interface element

introduces a certain initial flexibility between the solid continuum elements in the finite element mesh which

should not exist because its initial thickness is zero. Evidently, this may lead to an overly flexible response––

and to an incorrect stress distribution––if the initial stiffness is too low. On the contrary, a poorly condi-

tioned set of equations may arise if the initial stiffness is too large. In many cohesive crack models, the
initial stiffness is a free parameter, whose minimum value is selected by the user so that the stress distri-

bution before any damage occurs is not perturbed by the presence of the interface elements. However, the

initial normal stiffness of the interface in Needleman�s model, Kn is a function of the tc and Duc expressed by
Kn ¼
otn
oDun

����
Dun!0

¼ 27

4

tc
Duc

; ð19Þ
and it should be checked that this value is large enough.
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The constitutive equation for the cohesive crack given by Eq. (17) is elastic and the stresses transferred

through the crack obey the same law when the crack opens or closes. This behavior, which neglects the

damage introduced at the interface by the partial opening, is relevant when the normal opening decreases

upon loading due to changes in the external loading path or to an internal stress redistribution induced, for
instance, by the sudden failure of neighbor reinforcements. It was included in our analysis through a

damage parameter Du�n, which stands for the maximum value of Dun attained at a given loading step during

the analysis. If the new value of Dun in the next loading step surpasses Du�n, the tractions at the cohesive

crack are governed by Eq. (17), and Du�n is updated. Otherwise, the stresses transferred through the cohesive

crack are given by
tloc ¼
tn
tt1
tt2

0
@

1
A ¼

� o/
oDun

ðDu�n;Dut1;Dut2Þ Dun
Du�n

� 	
� o/

oDut1
ðDu�n;Dut1Þ

� o/
oDut2

ðDu�n;Dut2Þ

0
BB@

1
CCA if Dun 6Du�n; ð20Þ
where the relationship between the normal tractions and the normal opening between the crack faces is

linear, as shown in Fig. 3. The corresponding Cloc matrix is obtained from tloc following Eq. (15).
3. Global solution technique

The interface element described above was implemented in the finite element code Abaqus (2002) using

the user subroutine UEL, which computes the nodal forces vector (Eq. (11)) and the element tangent

stiffness matrix (Eq. (13)) at each load increment in each interface element. They are assembled with the rest

of the internal force vectors and stiffness matrices to obtain the global stiffness matrix of the structure. The

analyses presented in the following sections were performed with this code within the context of the finite

deformations theory and quasi-static deformations with body forces neglected. The nucleation and growth

of damage by progressive fracture of the interface elements led sometimes to the occurrence of snap-back in

the load–displacement curve of the model, e.g. the simultaneous reduction of the load and of the dis-
placement at the load point. Neither load-controlled nor displacement-controlled boundary conditions can

be used with the standard non-linear Newton–Raphson scheme to obtain the whole load–displacement

curve of the model under such conditions, and sophisticated control algorithms are normally used. The

modified Riks method (Crisfield, 1986) is available in Abaqus to deal with this kind of problems, but it does

not always converge, particularly if the curvature of the load–displacement curve is very high.

Another control strategy relays in finding a variable that increases monotonically during the whole

loading history. For instance, the crack opening displacement is a good choice if there is only one crack in

the structure but the random apparition of interface and/or particle cracks throughout the model may lead
to the closing of one crack during deformation as a result of local relaxations caused by the redistribution

of stresses. However, the sum of the relative openings of all the interface elements in the model along the

main loading direction always increases during loading and can be used to control the problem as shown

below.

Let N1 and N2 be two paired nodes on opposite surfaces of an interface element. Assuming that the

global load is applied along the x axis, the relative displacement between the paired nodes in this direction

can be related linearly to the force in a new dummy node Nc by PNc
x ¼ dN1

x � dN2
x . A dummy element made up

by nodes N1, N2 and Nc is created, and the corresponding stiffness matrix is given by
0 0 0

0 0 0

1 �1 0

0
@

1
A dN1

x

dN2
x

dNc
x

0
@

1
A ¼

PN1
x

PN2
x

PNc
x

0
@

1
A: ð21Þ
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Similarly, if NL is the node were the loads are applied, the load in this node, PxðNLÞ, is made equal to the

displacement of the dummy node along the x axis dNc
x , and this relation is introduced through the stiffness

matrix of another element as
Fig. 4.

model.
0 1

0 0

� �
dNL
x

dNc
x

� �
¼ PNL

x

PNc
x

� �
: ð22Þ
The element matrix of Eq. (21) is defined in all the paired nodes at the interface elements, and the

corresponding stiffness matrices, together with the stiffness matrix of Eq. (22), are assembled with the rest of

the elements in the model. The analysis proceeds by applying a force to the node Nc, which is the sum of all

the relative displacements between the paired nodes at the interface elements along the x direction. The

displacement on node Nc in this direction is precisely the external load applied on node NL to obtain

equilibrium. As it will be shown below, this control strategy was able to capture the whole load–

displacement curve in problems with showed marked snap-backs due to sudden fracture of brittle spheres
within the microstructure. Otherwise, this control strategy increases the computing time because the global

stiffness matrix is not symmetric.
4. Element validation

The interface element was validated using as benchmark the numerical results of Needleman (1987), who

analyzed the interface decohesion of a rigid sphere embedded in a cylinder of an elasto-plastic matrix. The

original simulation was carried out within the context of an axisymmetric unit cell with symmetric

boundary conditions (Fig. 4a). The sphere radius, r0, was equal to 0:25R, and the volume fraction occupied

by the rigid sphere in the cylindrical cell was 1.04%. The equivalent three-dimensional model was made up

of a 30� portion of the upper half of the solid cylinder under consideration (Fig. 4b). Symmetric boundary
Spherical particle embedded in a cylindrical cell. (a) 2D axisymmetric model used in Needleman (1987). (b) Equivalent 3D
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conditions were imposed on the cylinder external and lateral surfaces, and the model was meshed with

modified 10-node tetrahedra. The mesh size was similar to that reported in Needleman (1987). The

cylindrical cells were loaded by applying uniform displacements on the cylinder upper surface along the z
axis (uz ¼ v on z ¼ R) and on the external surface along the r axis (ur ¼ u on r ¼ R). Both displacements
were related during the analysis by
Fig. 5.

The re
Fr
2Fz

ð1þ u=RÞ
ð1þ v=RÞ ¼

rr

rz
¼ 1

2
; ð23Þ
where Fr and Fz stand for the total forces applied, respectively, on the external and upper cylinder surfaces,

and rr and rz are the corresponding components of the Cauchy stress acting on these surfaces. These
boundary conditions were introduced in Abaqus through a user subroutine to impose the non-linear multi-

point constraints.

In the original analysis by (Needleman, 1987), the matrix was modeled as an elastic-viscoplastic iso-

tropically hardening solid. However, as the influence of the strain rate on the flow stress was very weak, it

was neglected in our simulations, and the matrix was considered an elasto-plastic solid with isotropic

hardening following the incremental theory of plasticity and the Von Mises yield criterion. The matrix

elastic constants were E ¼ 200 GPa and m ¼ 0:30, and the flow stress, �r, was expressed as a function of

accumulated plastic strain, �� as,
�r ¼ r0 1

�
þ E
r0

��

�0:1

; ð24Þ
with r0 ¼ 400 MPa. The sphere–matrix interface was modeled with the corresponding modified interface

elements presented above with four integration points, one at the center of each linear triangle. The con-
stitutive equation for the cohesive crack followed Eq. (17), and the interface properties were given by

tc ¼ 3r0, c ¼ 10, and Duc ¼ 0:01r0.
Evolution of the effective stress in the cylindrical cell, re, as a function of the applied strain in the sphere decohesion problem.

sults obtained with the 2D axysimmetric and the three-dimensional models are practically superposed.
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The evolution of the effective stress on the cylindrical cell, re ¼ jrz � rrj, as a function of the logarithmic

strain along the z axis, �z ¼ lnð1þ v=RÞ, is plotted in Fig. 5 for the 2D axisymmetric and the 3D models.

Both curves are practically superposed, validating the new interface element, and it is particularly worth

noting that the onset of interface fracture (marked with an arrow in the figure) coincided in both simu-
lations. The contour plots in Fig. 6 show the effect of interfacial fracture on the pattern of the accumulated
Fig. 6. Contour plots of the accumulated plastic strain in the matrix: (a) �z ¼ 3:5% and (b) �z ¼ 8:8%.
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plastic strain in the matrix. Before decohesion, the maximum plastic strains were concentrated in a very thin

layer surrounding the rigid sphere (Fig. 6a). They spread very quickly throughout the cylindrical cell once

the interface was broken and the matrix deformation was no longer constrained by the rigid particle.
5. Control algorithm validation

The ability of the new control algorithm to obtain the whole load–displacement curve of the model was

demonstrated by simulating the tensile deformation of a sphere-reinforced composite including particle

fracture. The composite behavior was determined by the finite element analysis of a periodic cubic cell of

volume L3 containing a random and homogeneous dispersion of 7 non-overlapping identical spheres. The

volume fraction of spheres within the composite was 15% and the sphere radius, r0 was computed from the

unit cell volume and the number of spheres. Sphere center positions were generated randomly and

sequentially, and the ith particle was accepted if the distance between its center and all the previous particles

exceeds a minimum value, 2:07r0, imposed by the practical limitations of creating an adequate finite element
mesh. If the surface of the ith particle cut any of the cubic unit cell surfaces, this condition was checked with

the particles near the opposite surface because of the periodic microstructure of the composite. In addition,

the particle surface should not be very close to the cubic unit cell faces to prevent the presence of distorted

finite elements during meshing.

Finite element discretizations of a cubic unit cell were created from the particle center distributions.

Spheres were generated from the particle centers and radius, and those intersecting the cube faces were split

into an appropriate number of parts and copied to the opposite sides of the cube. Three faces of the cube

were meshed with quadratic triangles, and the meshes were copied to the opposite sides (Fig. 7). The pairing
of the nodes in opposite cube faces was necessary to apply the periodic boundary conditions. The model
Fig. 7. Finite element discretization of three concurrent faces of the cubic unit cell. The spherical particles are shaded. The three other

surfaces have the same discretization because the microstructure is periodic.
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volume (matrix and spheres) was meshed using the modified 10-node tetrahedra available in Abaqus (2002)

and more details about the unit cell generation and the finite element discretization can be found in

Segurado and LLorca (2002) and Segurado et al. (2003). According to the experimental evidence (Fig. 1b),

it was assumed that particle fracture occurred through the equator and a plane of modified interface ele-
ments was introduced at the equator of each spherical particle perpendicularly to the main loading axis.

If three concurrent edges of the cube stand for the axes of coordinates xyz, the periodic boundary

conditions can be expressed as a function of the displacement vector u as
Fig. 8.

withou
uðx; y; 0Þ � uz ¼ uðx; y; LÞ;
uðx; 0; zÞ � uy ¼ uðx; L; zÞ;
uð0; y; zÞ � ux ¼ uðL; y; zÞ:

ð25Þ
Tensile loading along the z axis is obtained with uz ¼ ð0; 0;wÞ, ux ¼ ðu; 0; 0Þ, and uy ¼ ð0; v; 0Þ, where
�z ¼ lnð1þ w=LÞ is the applied logarithmic strain along the z axis and u and v are computed from the

conditions
Z
X
tx dX ¼ 0 on x ¼ L and

Z
X
ty dX ¼ 0 on y ¼ L; ð26Þ
where tx and ty stand for the normal tractions acting on the current cell faces contained, respectively, in the

planes x ¼ L and y ¼ L.
The spherical reinforcements behaved as elastic and isotropic solids with Es ¼ 400 GPa and ms ¼ 0:2. The

matrix was modeled as an isotropic elasto-plastic solid with isotropic hardening following the incremental

theory of plasticity and the Von Mises yield criterion. The matrix elastic constants were Em ¼ 70 GPa and
mm ¼ 0:33, and the flow stress, �r, was expressed as a function of accumulated plastic strain, ��, as,
�r ¼ 400��0:15: ð27Þ
Simulations of the tensile deformation of an elasto-plastic matrix reinforced with a 15 vol.% of brittle ceramic spheres with and

t particle fracture.
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These values are typical of an aluminum alloy reinforced with stiff ceramic particles (alumina or silicon

carbide). The cohesive model introduced in Section 2.2 was used in the interface elements to simulate sphere

fracture with tc ¼ 500 MPa and Duc ¼ 0:1 lm (¼ 0:01r0), which led to a fracture energy of 28 J/m2, and

c ¼ 1.
The results of the simulation of the composite tensile stress–strain curve with and without reinforcement

fracture are plotted in Fig. 8. They are superposed up to an applied strain of �1.7%, when the first sphere

was broken. Reinforcement fracture occurred suddenly because the spheres were brittle, with very low
Fig. 9. (a) Contour plot of rz in the spheres. (b) Contour plot of the accumulated plastic strain in the matrix. The loading direction (z) is
vertical, and the applied strain was xx%. The displacements along the z axis were increased by a factor of four to show the cracks in the

broken spheres.
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fracture energy, and this led to a marked reduction in the average composite stress and strain. The pro-

nounced snap-back was perfectly captured by the control algorithm, and the deformation continued until a

new sphere was fractured, leading to another snap-back. The sawtooth shape of the stress–strain curve

shows that the spheres were fractured progressively during deformation even though they have the same
strength because they did not carry the same load. Of course, the number of spheres in the cubic unit cell

was too low to capture adequately the average composite behavior, but this was not the focus of the

simulation, which was aimed at checking the new control algorithm.

The contour plots of rz in the spheres and of the accumulated plastic strain in the matrix are shown in

Fig. 9a and b, respectively, at the end of the analysis. The stresses in the z direction are close to zero at the

center of the broken spheres, but not at the surface due to the load transfer from the matrix. This figure also

shows that three of the sphere cracks were approximately coplanar, indicating that particle fracture was

localized at a given plane within the composite. The load shed by the first broken particle was partially
taken up by neighbor particles in the same plane, which failed shortly afterwards. Moreover, the sphere

cracks opened up as the applied strain increased, and the plastic strain in the matrix was particularly intense

near the broken spheres, as is shown in the contour plot of the accumulated plastic strain in the matrix (Fig.

9b). This will lead sooner or later to the ductile matrix failure, and to the final composite fracture. The

numerical simulation of matrix failure was not considered here but it was addressed in another investi-

gation (LLorca and Segurado, 2004).
6. Conclusions

Recent developments in computational micromechanics were aimed at simulating the overall properties of
particle-reinforced composites by the numerical simulation in three-dimensions of a representative volume

element which mimics accurately the actual microstructure. However, it is well known that the mechanical

behavior of these composites is often controlled by the nucleation of damage in the form of particle fracture

and matrix/particle decohesion, and a new three-dimensional quadratic interface finite element was devel-

oped to include these effects in the simulations. The element was made up of two 6-noded triangular surfaces

which initially lie together and connect the faces of adjacent quadratic tetrahedra, the only elements sup-

ported by the automatic meshing algorithms used in the discretization of the complex composite micro-

structure. Two versions of the element were developed; the standard element was compatible with standard,
isoparametric 10-node tetrahedra, while the modified interface element was compatible with the composite

tetrahedra of Thoutireddy et al. (2002) and with the modified 10-node tetrahedra of Abaqus (2002).

The element was developed within the framework of implicit analysis and large displacements. The

relative displacement of the element faces generates normal and shear stresses depending on the constitutive

equation of the cohesive crack, which is independent of the element formulation. The new interface element

was programmed as a user subroutine in Abaqus (2002) and was validated by comparison with the

numerical results of Needleman (1987), who analyzed the interface decohesion of a rigid sphere embedded

in an elasto-plastic matrix.
The application of the new interface element to simulate damage (by particle fracture or interface

decohesion) in cells containing a large number of particles introduced a new problem. The progressive

fracture of the interface elements led sometimes to the occurrence of snap-back in the load–displacement

curve of the model, e.g. the simultaneous reduction of the load and of the displacement at the load point. As

the standard control algorithms were not able to provide an unconditional convergence, a new control

strategy was developed. The new technique relays in finding a variable that increases monotonically during

the whole loading history, and this variable was the sum of the relative openings of all the interface elements

in the model along the main loading direction. The new control technique was also implemented in Abaqus
(2002) as another user subroutine, and it was successfully validated in the numerical simulation of the
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tensile deformation of a sphere-reinforced composite which presented severe snap-backs in the load–

displacement curve due to the progressive fracture of the spheres.

Appendix A. Shape functions

The shape functions of the interface element connecting two 10-node tetrahedra faces (6-node triangles)

have to match the shape functions of the tetrahedra at that face. Thus, the shape functions of the standard

interface element, compatible with those of the standard quadratic 10-node tetrahedra, are expressed as
/1ðn; gÞ ¼ 2 1
2

�
� n� g

�
ð1� n� gÞ;

/2ðn; gÞ ¼ 2n n
�

� 1
2

�
;

/3ðn; gÞ ¼ 2g g
�

� 1
2

�
;

/4ðn; gÞ ¼ 4nð1� n� gÞ;
/5ðn; gÞ ¼ 4ng;

/6ðn; gÞ ¼ 4gð1� n� gÞ;

ðA:1Þ
where the position of the nodes on the triangular surface is shown in Fig. 10.

In the case of the modified interface element, the quadratic triangle is subdivided into four linear tri-

angles, as shown on Fig. 10. The shape functions at ðn; gÞ depend on the particular subtriangle in which the

point is located, and they are expressed by (Thoutireddy et al., 2002),

Triangle I
/1ðn; gÞ ¼ 1� 2n� 2g;

/4ðn; gÞ ¼ 2n;

/6ðn; gÞ ¼ 2g:

ðA:2Þ
Triangle II
/2ðn; gÞ ¼ 2 n
�

� 1
2

�
;

/4ðn; gÞ ¼ 1� 2 n
�

� 1
2

�
� 2g;

/5ðn; gÞ ¼ 2g:

ðA:3Þ
Triangle III
/3ðn; gÞ ¼ 2 g
�

� 1
2

�
;

/5ðn; gÞ ¼ 2n;

/6ðn; gÞ ¼ 1� 2n� 2 g
�

� 1
2

�
:

ðA:4Þ
Fig. 10. Node positions and triangle subdivisions for the shape functions of the modified interface element.
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Triangle IV
/4ðn; gÞ ¼ 2 1
2

�
� g

�
;

/5ðn; gÞ ¼ 2nþ 2g� 1;

/6ðn; gÞ ¼ 2 1
2

�
� n

�
:

ðA:5Þ
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